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NUMERICAL EXPERIMENTS ON THE STABILITY OF 

DIMENSIONAL LINEAR STUDY 
LEADING EDGE BOUNDARY LAYER FLOW: A TWO- 
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A numerical study is performed in order to gain insight to the stability of the infinite swept attachment line 
boundary layer. The basic flow is taken to be of the Hiemenz class with an added cross-flow giving rise to 
a constant thickness boundary layer along the attachment line. The full Navier-Stokes equations are solved 
using an initial value problem approach after two-dimensional perturbations of varying amplitude are 
introduced into the basic flow. 

A second-order-accurate finite difference scheme is used in the normal-to-the-wall direction, while 
a pseudospectral approach is employed in the other directions; temporally, an implicit Crank-Nicolson 
scheme is used. Extensive use of the efficient fast Fourier transform (FFT) algorithm has been made, 
resulting in substantial savings in computing cost. 

Results for the two-dimensional linear regime of perturbations are in very good agreement with past 
numerical and theoretical investigations, without the need for specific assumptions used by the latter, thus 
establishing the generality of our method. 

KFY WORDS Hydrodynamic stability Leading edge boundary layer 

1. INTRODUCTION 

Interest in studying leading edge contamination has recently intensified both in the U.S.A. and in 
Europe, the motivation stemming from the efforts to build laminar flow wings for transonic 
commercial use and also for hypersonic vehicle projects such as NASP (National Aerospace 
Plane) in the U.S.A. and HERMES and SANGER in Europe.',' A Direct Numerical Simulation 
(DNS) of flow in the Leading Edge Boundary Layer (LEBL) is presented aimed, within the 
limitations of the available computing resources, at  addressing the problem posed by the still wide 
gap between theoretical/numerical investigations and experimental results while departing from 
normal mode analyses. 

The infinite swept attachment line flow may be described by the classical stagnation point flow 
due to Hiemenz3 with an added spanwise component, assuming that the curvature of the region 
in the immediate vicinity of the attachment line may be neglected. This cross-flow is homogen- 
eous along the attachment line and the resulting boundary layer is of constant thickness (in 
contrast to the Blasius profile). It is well known that the resulting flow may be represented by an 
exact solution of the Navier-Stokes equations. This feature is of particular importance for the 
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stability analysis, since no boundary layer approximation is necessary and hence the search for 
a critical value of the Reynolds number for the onset of transition is based on a self-consistent 
theory (unlike the Orr- Sommerfeld analysis used in the Blasius boundary layer stability invest- 
igations). 

Gortler4 and Hiimmerlin’ originally studied this instability for the unswept 2D stagnation 
point case assuming that the chordwise component of the perturbation velocity u“ depended 
linearly on the chordwise co-ordinate x, only quoting reasons of mathematical feasibility as 
justification for their assumption. All subsequent investigations adopted this or the extended form 

u”=xu1+x3u3+ . . . . 
Many years later, Spalart,6 performing a direct simulation of the instability, turbulence and 
re-laminarization of flow on swept and unswept cylinders, observed the white noise perturbations 
introduced into the flow initially assuming the Gortler-Hiimmerlin form after a long integration 
time. The theoretical works of Gortler and Hiimmerlin, though, did not yield the crucial result 
(from an engineering point of view) of a critical Reynolds number for the onset of instability. 

Theoretically, the invcstigation of the stability of the infinitc swept attachment line flow 
continued with the work of Hall el al.,7 who studied the linear regime of the disturbances using 
a normal mode analysis for the perturbations and solved the resulting eigenvalue problem, while 
Hall and Malik* extended this work into the weakly non-linear regime using analytical and 
numerical methods. From the first work it was concluded that the theoretical momentum 
thickness Reynolds number for the linear onset of instability in the attachment line boundary 
layer was R, = 236, while Hall and Malik8 reported subcritical instability, quoting R o z  21 6. 
Jiniinez et d9 also reported a value for R,  consistent with the findings o f  Reference 7, but were 
unable to find subcritical instability as in Reference 8. 

Experiments were performed in order to assess the value of this important physical quantity. 
For a review of the pioneering work in leading edge contamination the reader is referred to 
Reference 1. The main conclusions of the comprehensive experimental study of LEBL stability by 
P0ll1O ~ l 4  were that the upper limit for the stability of the laminar swept attachment line 
boundary layer flow occurs at momentum thickness Reynolds number R, 230, also establishing 
that yaw of the cylinder has a powerful destabilizing effect at sufficiently high freestream Reynolds 
numbers. In the absence of instability at the attachment line, for a fixed yaw, the location of the 
transition moves progressively forward towards the attachment line as the freestream Reynolds 
number is increased. If the spanwise Reynolds number based on momentum thickness exceeds 
approximately 230, though, instability occurs at the attachment line itself. This argument is 
invalid if large disturbances generated at the wing fuselage junction or at boundary layer fences 
are present; in this case turbulence occurs at the attachment line itself, even at R, as low as 100. 

Our contribution has been a numerical study of the stability of the linear regime of flow in the 
swept attachment line boundary layer. Previous investigations have been either direct simula- 
tions or solutions of eigenvalue problems resulting from a normal mode analysis of the perturba- 
tions introduced into the flow. Within memory and CPU limitations (working on a fixed budget 
on the Amdahl 1100 and 1200 supercomputers of Manchester Computing Centre) we chose the 
first course of action, since the second approach has rcceived a fair amount of attention over the 
years by a number of investigators. The extent to which our approach, namely time marching as 
opposed to solution of an eigenvalue problem, may be applicable is investigated and results are 
obtained and compared with past investigations. 

The reference point for this work of ours has been that of Hall et uL7 Theirs is a thorough 
investigation of the linear regime of perturbations using an eigenvalue approach. Extensive 
results have been presented, serving as a model to compare against and validate our initial- 
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value-problem-based numerical scheme. Two direct numerical simulations also exist presently, 
namely those of Spalart' and Jimknez et aL9 The objective of the former work has been 
a simulation of the full transition and re-laminarization process in the LEBL, while the latter has 
been an investigation of the linear and non-linear regimes, both in incompressible flow. The 
numerical method ofSpalart6 is fully spectral in space, while both the work of JimCnez et aL9 and 
ours use Fourier expansions in the periodic directions on the wall, along the attachment line and 
normal to it respectively, and finite difl'erences in the direction normal to the wall. 

Although using similar tools, the works of both Spalart' and Jimenez et uL9 difl'er from ours in 
scope, ours being more focused on a specific flow regime. Our attempt is to present, using DNS 
and reasonable computing times, a detailed picture of LEBL instability while perturbations are 
still of small amplitude. The extent to which the eigenvalue approach adopted by Hall er al.' and 
Hall and Malik8 is necessary for a description of linear instability in the LEBL is one of the aims 
of our investigation. On the basis of results presented in References 6 and 9, the only comparison 
possible between their work and ours is the consistency in the value of KO in the linear regime, all 
three simulations confirming the result of Reference 7 (and the persisting discrepancy between 
linear theory and experiment j. We defer addressing the apparent contradiction between the 
results of References 8 and 9 regarding the existence of subcritical instability in the non-linear 
regime of perturbations to a later (non-linear) study. To this end we will first attempt to establish 
the applicability of our method in the linear regime. 

2. NUMERICAL SOLUTION PROCEDURE 

The first assumption that we make in order to solve for the base flow over the windward face of an 
infinite swept cylinder, as already discussed, is that this face may be treated as locally flat.* The 
oncoming flow outside the boundary layer is taken to be a stagnation point flow with a stream- 
wise velocity component proportional to the distance from the leading edge. Taking x to be the 
chordwise direction, y to be the normal to the attachment line direction and z to be the spanwise 
direction (along the attachment line), we define the basic flow by its non-dimensional components 
( U ,  V,  w) along the directions (x, y, z j  respectively. The dimensional lengths are L ( x ,  y ,  z ) ,  where 
I, is a typical length scale along the s-direction, and the respective dimensional velocities are 

w, (x - -, w ) , 
where W,  is the z-velocity component of the freestream velocity (U,, V,, W,) sufficiently far from 
the surface. R is the Reynolds number of the flow, 

based on A, the boundary layer length scale, 

and 11 is the kinematic viscosity of the flow. In the absence of any disturbance the basic flow is 

* Terms O(& ' I 2 )  and O ( R L  3~:z6t i /2 .x) ,  K being the curvature of the wall and R, the Reynolds number based on an O(1) 
length I, ,  are introduced into the Navier 3tokes equations when the equations are written for flow past a cylindrical body 
including curvature." In view of  the largeness of R,, in this work, these terms will be neglected. 
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taken to be of the form 

V.THEOFTLIS 

which, if substituted into the Navier-Stokes equations, leads to the system of ordinary differential 
equations of the Falkner-Skan family, 

with boundary conditions 

V(O)=Ic ,  V ' ( O ) = O ,  .'(a)= - 1, 

W(O)=O,  %(%I= 1, 

where prime denotes differentiation with respect to the similarity variable 11 = y/A and ti is a non- 
dimensional parameter used to control blowingjsuction in the boundary layer. This reduced form 
of the Navier-Stokes equations represents a generalization of the well-known Hiemenz3 flow in 
that, in addition to the plane stagnation point flow, it incorporates a non-zero spanwise velocity 
component. A straightforward shooting technique is used to solve this problem in order to obtain 
the basic flow velocity profile. Details of the solution may be found in References 7, 8 and 16-20 
among others. 

In formulating the perturbed flow problem, we shall adopt the velocity-vorticity formulation 
for the Navier- Stokes equations as described for example in Reference 21. This method was 
chosen firstly to avoid ambiguities in the specification of boundary conditions for the pressure at 
the wall and secondly because it is readily applicable to three-dimensional situations. The latter, 
i.e. a study of the three-dimensional regime of perturbations, is one of the potential extensions of 
the present work. Using this approach and considering the flow to be incompressible, the three- 
dimensional unsteady Navier-Stokes equations take the (non-dimensionalized) form 

I 

V2G= -v x i ,  (4) 

I 

where i = ( u ,  u, w) is the velocity vector and [=((, 11, [) is the vorticity. 
Small perturbations are introduced in the flow over the swept cylinder. The velocity field 

describing the flow may then be taken to be a superposition of the basic flow terms and 
perturbation velocities. Two-dimensional forms of the perturbation velocities will be assumed. 
These velocities and the corresponding vorticities are substituted into the basic set of equations 
(4) and (5) and the Hiemenz flow is subtracted. A pseudospectral method is employed to calculate 
the spatial derivatives in the spanwise direction z and the resulting equations are discretized in 
spectral space using a second-order finite difference scheme in the normal direction y. 

The impetus to the implementation of spectral methods was given by the efficient algorithm of 
Cooley and Tuckey,22 namely the fast Fourier transform (FFT) algorithm. We implemented the 
spectral idea using an approach similar (in spirit, if not in detail) to that of References 23-25, to 
which the reader is referred for details regarding the precise definition of the Fourier transform 
implemented as well as the discretization scheme in both physical and transform spaces. 
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A (second-order) Crank-Nicolson26 scheme is used for the time marching of the equations, an 
implicit scheme chosen because of its superior stability properties over explicit schemes. The 
resulting equations to be solved take the form of a system of simultaneous algebraic equations, 
written symbolically as 

A X = B  (6) 
at constant wave number and time. The solution of this system (only practically feasible owing to 
the banded structure of A) may be used to update the flow quantities at the new time level. 

Having obtained the solution at a given time level in spectral (i.e. Fourier) space in the general 
formf*(y,p) ( p  being the spanwise wave number), we back-transform into real space, thus 
obtaining the velocity, vorticity and other quantities of interest in physical space in the general 
formf(y, z ) ,  employing the FFT method referred to earlier. Since real space quantities are real, 
their spectral counterparts are Hermitian sequences and this results in significant savings in 
computer storage and time as the grid requirements increase. The triggering of the (unsteady) set 
of equations comes from forcing the normal component of the perturbation velocity on y = 0, thus 
modelling physically attainable situations and giving our method potential for direct comparison 
with experimental data. 

3. A TWO-DIMENSIONAL7 LINEAR, TIME-MARCHING SCHEME 

3.1. Assumptions and governing equations 

The assumptions made here are: firstly, the basic flow is taken to be the generalized Hiemenz 
flow which we solved for earlier; secondly, the perturbation velocities are taken to be functions of 
( y ,  z ,  t ) ,  where y is the normal to the surface co-ordinate, z is the spanwise co-ordinate and t is time 
(a fact stemming from the two-dimensionality of the flow in the attachment line boundary layer); 
thirdly, the chordwise velocity components of basic and perturbed flow are linearly dependent on 
the chordwise co-ordinate x. 

If (U, 6, W) is the velocity vector describing the basic flow and (17, Ti, G)  is the vector describing the 
perturbed flow, then we assume 

U = XU( y ) ,  ii = xzi ( y ,  z ,  t ) ,  

f i =  V(Y) ,  V"=??(y, z ,  t ) ,  

w= W(y), G=&(y,z.  t), 

where ( U ,  V, W) is the velocity vector describing the Hiemenz flow and (i, u*, &) is the perturba- 
tion velocity. It follows for the vorticity that - F= W'(y), 5=fiy-u"z=t(Y,z,  t ) ,  

g=0, ~ = x U , = x f i ( y ,  z,  f ) ,  

[= - x U ' ( y ) ,  
- - - 

[= -xi&= - x [ ( y ,  z ,  t), 
with bars referring to basic flow quantities and hats and tildes refefring to the respective 
perturbations; prime denotes differentiation with respect to y and subscripts denote partial 
differentiation with respect to the corresponding spatial co-ordinate. Substituting these forms 
into the basic set of equations (4) and (5) and Fourier transforming leads to the following set of 
disturbance equations in spectral space (having subtracted the basic Hiemenz-flow-related 
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terms): 

V.THEOFILIS 

(7) 

where asterisks denote spectral (Fourier) space functions and RHSl -RHS3 denote the quadratic- 
in-perturbation right-hand sides of the equations, which in this linear scheme are set to zero. 
No-slip boundary conditions for the x- and z-components of the velocity are imposed and the 
definition of vorticity is used to derive boundary conditions for the vorticity, namely 

[* ( y = 0) = 6: (0) - ib t  *(o), 

{*(y = 0) = 0, 

i * (y = 0) = ti; (0). 

with subscripts denoting partial differentiation and derivatives at the wall calculated using 
standard one-sided, second-order-accurate finite difference formulae. In the far field we expect all 
perturbations to vanish: 

h*(y  - x) - 0, f* ( y  - co) -0, 

G*(y-,m)-+O, G * ( J  -+ x) 40, 

S*(y  - m) + 0, p ( y  -, m) + 0. 

A number of different cases were considered for the function 6* (0) which acts as the flow 
forcing. A universal requirement for the forcing, for all schemes utilized, was that the function 
should be bounded everywhere, both in time and in real and spectral space. In the case where the 
physical situation which we wanted to model was an impulse (corresponding, for example, to a jet 
impinging from the surface normal to the wall), the forcing in spectral space was chosen to be 
a short-lived, smoothly growing and decaying (temporally and spatially) function such as 

6*(y=O, ,$ t )  = h f ( t )  tanh2(t)(l -tanh’(t))e-”. (13) 
If, on the other hand, we modelled the situation where waves in the boundary layer are set up 

by a periodic physical forcing, such as a vibrating ribbon, a (temporal) sinusoidal form of the 
forcing function was considered. In spectral space this was 

t:*(y=o, 0, t )  =hf(t)sin(t)e-p”. (14) 
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In both cases h is an O(1) amplitude function used to control the magnitude of the forcing 
applied to the normal component of the velocity. By increasing h, we expect to enter the regime 
where non-linear effects become progressively more important. The unit step function 

is used to indicate the finite start-up time in our initial value problem calculations. Other, more 
general forms of perturbations might have been studied in place of the error function type of 
disturbance in (13) and ( 14). They should also be bounded in space and time. However, in view of 
the need for special treatment in spectral space in order to overcome potentially arising slow 
convergence when a gcneral form of disturbance is used, we chose to use the error function type, 
expecting no loss of generality in capturing the important physics by this simpler form. 

3.2. Time-marching numerical solution 

Considering the discretization scheme discussed earlier when applied to (7) (12), the meaning 
of the matrices in (6) now becomes clear. A is a 6 N y  x 6 N y  banded matrix with bandwidth 
determined by the number of unknowns and the order of the finite difference scheme used. N y  is 
the number of points in the y-direction. In the case solved, we have six unknowns, i.e. three 
velocity and three vorticity components, and the second-order finite difference scheme used 
requires functions at three neighbouring grid points; hence the bandwidth of A is 18 (block 
tridiagonalj. 

X is a column vector of length 6Nj; each entry of which is a velocity or vorticity component on 
a y-grid point at the same (current) time level. 

B is also a column vector of length 6Ny containing the right-hand sides of the equations, 
velocity and vorticity components at the previous time level, as well as the boundary conditions. 

We first determine the Hiemenz flow solution and normalize the x- and y-velocities and their 
derivatives by the Reynolds number R,  consistent with the assumptions made earlier. We then set 
up the coefficients of A. The six solution components, i.e. three velocities and three vorticities, are 
only stored at two time levels, namely the previous and the current. Initially we set all solution 
components equal to zero and expect the solution to be driven by the wall forcing. The system of 
equations (6) is set up and solved by Gaussian elimination using a set of NAG27 library 
subroutines appropriate for vector machines. The solution consists of the three velocities and 
three vorticities in spectral space at the current time level. Having obtained the solution in 
spectral space, we overwrite the previous time level solution with the current time level solution 
and solve for the next time step. The solution in real space has to be calculated at each time step 
and this is also carried out by NAG library subroutines which efficiently perform FFTs on vector 
machines. 

In order to assess the consistency and accuracy of the solution, an extensive grid experimenta- 
tion was performed. Different values of the time step parameter as well as the number of grids in 
both the (uniform) normal (}I) and spanwise ( z )  directions were tested. Within the limitations 
presented by the machines used, it was concluded2" that the choice of 

N y =  1251 xNz=40 with A/3=0.125 

is the optimal compromise between the desire for as fine a resolution as possiblc and memory 
restrictions. 
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3.3. Results 

Perturbation velocity and vorticity profiles at the midpoint of the z-range (z = 0), results typical 
of those obtained in Reference 20, are presented in Figures 1-3. The sinusoidal forcing (14) was 
used and t =  10n (when the transient behaviour of the solution has subsided). 

In order to validate the present method, we compare our results with those of Hall et d7 They 
investigated the linear regime of perturbations introduced in the basic flow using a temporal 
approach and solved the respective eigenvalue problem, thus establishing the critical Reynolds 
number for the onset of instability as well as the effects of wall suction/blowing on stability. 

Using the wall forcing function (in spectral space) 

C*(y=O, ,$ t )=h f ’ ( t )  tanh2(t) (l-tanh2(t))e-” 

and the time step At=0.1, we solved for just one value of the spanwise wave number p at a time 
and observed the development of any flow quantity with time. In (R, f i )  space we varied R and p, 
marched the solution in time and observed whether damped or amplified oscillations occur; if 
(R, f i )  is located inside the neutral curve predicted by Reference 7, we expect temporally growing 
oscillations to be observed, while if the (R,  f i )  point falls outside the neutral loop, the temporal 
oscillations observed should be damped. The choice of a pair of parameters on the neutral loop of 
Reference 7 should produce oscillations of constant amplitude. 

We ran a number of ( R ,  p) cases; typical results obtained are given in Table I, indicating the 
status (growing or decaying) that a perturbation introduced into the flow is found in for a specific 
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Figure 1. Time-marching results: perturbation velocity profile ri (z =0)  
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Figure 3. Time-marching results: perturbation vorticity profile fj(z = 0) 
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Table 1. Two-dimensional linear stability results ( N y =  1001 x N z =  1)  

500.0 
600.0 
820.0 
900.0 
700.0 
900.0 
700.0 
700.0 
700.0 
900.0 
550.0 
900.0 

0.300 
0300 
0200 
0.350 
0.350 
0.375 
0.375 
0.200 
0225 
0.200 
0.300 
0.175 

52.65 f0.05 
54.00 f 0.10 
88.69k0.01 
48.30k0.01 
46.50 i0.10 
44.80 kO.10 
43.1 0 f 0.10 
86.55 f 0.05 
76.20 +-o. 10 
90.00 f 0.1 0 
53.35 k0.05 

103.60 fO.10 

0.01 899 f 0~00002 
0.01 850 & OW002 
0.01 127i0~00001 
0.02068 & 0~00002 
0.02 148 & 0,00003 
0.02232 f0.00001 
0,02320 f 0.00005 
0.01 155 ~0~00001 
0.01 312 f 0~00001 
0.0 1 1 1 1 f. 0~00001 
0.0 I860 ~ 0 ~ 0 0 0 1 0  
090965 f 0.00001 

- 0 1 1 936 & 0.0000 I 
--011624+0~00001 
--0.07085 fOQ0001 
- 0. I3005 k 0WOO1 
-0~13503fO~oOoOl 
-0.14022 k0~00001 
-0~14569~0~00001 
- 0.07259 f 0~000Ol 
- 0.08246 f 09000 I 
- 0.06984 +0.00001 
-0.11773+0.00001 
- 0.06065 k 0.00001 

0.00049 f 0.0000 1 
- 0.00075 f 0.0000 1 
- 0.00083 f 0.00002 
- 0.00043 f 0~00001 
- 040012 f 0.00001 

0.00143 f0.00001 
0.001 33 f 0~OOOO1 
0.00030 f 0.00001 

- 0.00066 f 0~00001 
-0.00141 f0~00001 
- 0.00020 f 0~00001 
~ 0.00036 0.00001 

choice of parameters (R,  p). The period of the oscillations observed is denoted* by or and its 
inverse by f r .  Growth rates calculated from 

ln(i;(f)) - ln(fi;(t - At)) 
i At 

0 = 

are also presented.? The solution was computed until the growth rates had settled to the 
presented values (accurate to five decimal places); owing to the smallness of thc imaginary parts of 
the growth rates, this was only achieved after (non-dimensional) time t z 750 had elapsed. A large 
number of different (R ,  /?) choices was run, of which typical results are presented in Figures 4-9, 
each representative of a case of growing and decaying oscillation of a flow quantity (in the case 
presented, a wall shear) and the corresponding growth rates. 

Using our two-dimensional linear results, we were able to reproduce the neutral loop corres- 
ponding to that of Hall et ~ l . , ~  which is presented in Figure 10 (from Reference 19) for two values 
of the non-dimensional suction parameter, K = 0 (no suction) and K = 0.4 (blowing). The critical 
Reynolds number RLrlt was found to be (as may well be expected) a function of the grid used. 
Bearing in mind the cost of the calculations for a full set of results in ( R ,  p )  space, we used a fairly 
moderate number of points in the normal direction ( N y =  1001) and this influenced the precise 
value of RLrr,. Nevertheless, the agreement between the results obtained by the eigenvalue 
problem approach of Hall et uL7 and our calculations can be seen as quite satisfactory. 
A discrepancy at the lower branch of the neutral curve is attributed to insufficient resolution in 
the normal direction in our numerical solution and may well be expected, since a more accurate 
description of lower-branch instability would require some form of asymptotic analysis using 
triple-deck theory. The powerful destabilizing effect of blowing is also established. 

Overall, the results build confidence in extending our method in order to study non-linear 
perturbations introduced in the infinite swept attachment line boundary layer flow, as well as the 
stability of the flow at stations off the attachment line. Before we turn our attention to the 

* In the notation of Reference 7 the wave period is denoted by o, and we have kept the same notation; the corresponding 
frequency in the notation of Reference 7 is ac,, corresponding to in our notation. The oscillation period (11  in,; 
should not be confused with the growth rate denoted by R=R,+iR,,  the relation between the real parts thereof'being 
R, = 2xL. 
t Identical results were obtained using the (standard) definition (l/A)dA/di, A =  i ;( t) ,  



STABILITY OF LEADING EDGE BOUNDARY LAYER FLOW 163 

R- 700.00 No- 0 NO- 1 
0- 0.00 A=. a. aa AD- 0.200 
b- a.2oo A = -  0.10 N,.- 1001 
m- 1 .- 0.00 b y -  a.aio 

0. m 3  

0. 00002 

0. 0000 I 

a- 
x 
3 

-0. 0 0 0 0 l  

t 

-0. aw02 

-0. oaoas 

-0. 0000L 

-0.00005 

Figure 4. Time-marching results: wall shear rl,, versus t; R =  700, p=0.2 
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Figure 10. Comparison of results of Reference 7 with our DNS 

aforementioned problems, however, we compare DNS results presented earlier with results 
obtained using (well-established) linear stability theory tools in order to further validate our DNS 
approach. 

4. A TWO-DIMENSIONAL, LINEAR, TIME-PERIODIC SCHEME 

4.1. Assumptions 

Time-periodic perturbations to the basic flow have also been considered (as assumption which 
is a standard investigation tool in linear stability theory). The basic flow is again taken to be the 
Hiemenz flow, while the assumptions of linearity together with the assumed x-variation of the 
streamwise components of velocity made in the time-marching case have been retained. Using the 
velocity-vorticity approach, we assume the following (temporal) structure of the perturbation 
flow quantities in physical space: 

(1 5 )  G ( J ,  z, t )  = C(y ,  z)eiRt + c.c., 

where tildes and hats again denote perturbations, Q is a frequency and 'c.c.' denotes complex 
conjugate; a similar structure is assumed for the other velocity and for the vorticity components. 
Substituting the above forms into the basic set of equations (4) and (5),  subtracting the Hiemenz- 
flow-related terms and neglecting quadratic-in-perturbation quantities compared with the per- 
turbations, we obtain equations of the form (in real space) 



STABILITY OF LEADING EDGE BOUNDARY LAYER FLOW 167 

which may be simplified and Fourier transformed to obtain (in spectral space) equations of the 
form 

similar equations holding for the other components of the velocity and vorticity fields. The 
boundary conditions for this system are no-slip for the x- and z-components of the velocity and 

f i*(y=o,  -4 ie-PZ (18) 

for the y-velocity component, while at  the far field we expect all perturbations to go to zero. The 
specific form of boundary condition on the y-component of the velocity was chosen so as to 
correspond to the sinusoidal forcing of the time-marching scheme,* thus enabling direct compari- 
sons between the two schemes. 

The system of equations consisting of (17) and the respective equations for the other two 
velocity and three vorticity components is solved in spectral space in a very similar manner as for 
the time-marching case. An important difference between this and the time-marching case is that 
the only non-zero components of the right-hand-side array €3 are now those associated with the 
boundary conditions. Of course, no time marching of the equations is required, because time in 
this time-periodic case only appears as a parameter. Once the system of equations has been 
solved, the equations of the generic form (15) are used to construct the field of perturbations in 
real space. Finally, this field is Fourier transformed from real into spectral space and a direct 
comparison of results obtained using the time-marching and time-periodic approaches is possible 
in both spaces. 

4.2. Results 

An extensive grid experimentation is also performed in this case to establish a grid independent 
solution.20 The optimum grid, again balancing resolution and memory requirements, is found to 
be that of the time-marching case. In performing the comparisons between the time-marching and 
time-periodic schemes, a relatively small time step At  = 71/64 was chosen in order to give the 
former a smooth start and, for consistency, the sinusoidal wall forcing was chosen for the 
time-marching runs. The time-marching scheme was then run until it produced a transient-free 
solution. The elimination of transients was determined to have occurred by obtaining the solution 
at any time to and comparing it with the solution at t=  to+2n. It was found to be necessary for 
time to grow as large as t = 1 0 ~  for the time-marching scheme to produce the results presented 
(although this value is Reynods-number- and Q-dependent). 

The time-periodic solution at t= 71/64 was compared with the time-marching solution at 
t = 1071 + rr/64. A representative result obtained in real space is shown in Figure 1 1. One may 
readily notice the overall good agreement in the upstream as well as in the near-the-origin (z=O) 
z-region. Further downstream the time-marching scheme shows oscillations which are not 
present in the time-periodic one. These are due to 'the transient behaviour to which we referred 
earlier and may be eliminated completely by time marching the solution even further, as results 
obtained but not presented here indicate. 

The neutral curve for 7c=O shown in Figure 10 was again reproduced, this time in a spot- 
check manner by appropriately choosing values for (R,  0) to correspond to those indicated in 
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Figure 11. Representative comparison between time-marching (- -) and time-periodic ( ) results: ti), 

Reference 7. Again, the choice of the above parameters determined whether the particular flow 
was linearly stable or unstable, in a manner totally consistent with the findings of the previous 
section as well as those of Reference 7. 

As stated already, we want to adhere to our initial value problem approach, the results of which 
can only be trusted once the transients originally present in the solution have been eliminated. 
Additionally to building confidence in our codes by reproducing results of the time-marching 
approach such as neutral curve and growth rates, this time-periodic scheme served to provide us 
with a good estimate of the time required to elapse before the transient behaviour in the linear 
regime has subsided. 

5. CONCLUSIONS AND FUTURE EXTENSIONS 

A numerical study has been performed in order to assess the feasibility of a direct numerical 
simulation in studying the stability of LEBL flow. The main conclusion of this work is that such 
a study is indeed possible using an initial value problem approach, this being the novel element in 
our work compared with older theoretical studies based on normal mode analysis. 

The linear regime of perturbations introduced in the infinite swept attachment line boundary 
layer flow was re-examined by our method and our findings were consistent with known results 
obtained by combination of asymptotic analysis and computation, solution of the eigenvalue 
problem or direct simulations. The gap between these and the experimental results, however, 
remains, thus motivating further study. 

One of the requirements of the numerical scheme used was its potential to extend the present 
study to three-dimensional perturbations. Indeed, by introducing appropriate forms of perturba- 
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tions and extending the spectral scheme used to three dimensions, one may study the stability of 
the LEBL flow at stations off the attachment line (in its vicinity but not too far off, where the 
cross-flow becomes progressively more dominant) using essentially the same numerical method. 
This idea was inherent in the choice of the velocity-vorticity formulation and work on the 
three-dimensional linear regime is currently under way. 

Finally, with the gap between theoretical and experimental results persisting, work on experi- 
mental validation is being considered to be performed at the Goldstein Aeronautical Engineering 
Laboratory at Barton, Manchester in the continuing quest for reconciliation of results. 
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